

Steffen Haupt
Moritzer Straße 35 01589 Riesa-Poppitz
Tel. 03525/ 68 01 - 0 Fax: 03525/ 6801 - 20
e-mail: info@haupt-hydraulik.de
Internet: www.haupt-hydraulik.com

Parker - Verschraubungstechnik

Rohre für Leitungssysteme

Katalog 4162-5/2014 deutsch - Auszug

KATALOG

Vertrieb

Frau Krauspe Frau Göhler Tel.: 03525 680110 Tel.: 03525 680111 krauspe@haupt-hydraulik.de goehler@haupt-hydraulik.de

Technischer Außendienst

Herr Burkhardt

Tel.: 03525 680112

burkhardt@haupt-hydraulik.de

Rohre und Leitungen

Inhalt

Technische	Eigenschaften, Auslegungsregeln und Normen	Seite 257
Rohre für Lo	eitungssysteme	
	EO-Stahlrohre, nahtlos, metrisch, Material E235+N	
	für Schiffbau und Offshore Anwendungen	261
	EO-Stahlrohre, nahtlos, metrisch, Material E235+N	
	für landbasierte und industrielle Anwendungen	262
	EO-Stahlrohre, nahtlos, metrisch, Material E355+N	
	für Schiffbau und Offshore Anwendungen	263
	EO-Stahlrohre, nahtlos, metrisch, Material E355+N	
	für landbasierte und industrielle Anwendungen	264
	EO-Edelstahlrohre, metrisch, ASTM A269, Material 316L	
	für Schiffbau und Offshore Anwendungen	265
	EO-Edelstahlrohre, metrisch, ASTM A269, Material 316L	
	für landbasierte und industrielle Anwendungen	266
	EO-Edelstahlrohre, Scheduled Größen, ASTM A312, Material 316L	
	für Schiffbau und Offshore Anwendungen	267
Anhang		268

Rohr- und Leitungsspezifikationen

Empfohlene Stahlrohre und Leitungen

Parker empfiehlt den Einsatz von kaltgezogenen, nahtlosen Hydraulikrohren und Leitungen, entsprechend DIN EN 10305-4. E 355 (St. 52.4 NBK) oder E 235N (St. 37.4 NBK).

- + Präzisionsabmessung/Form + Innen sauber
 - + Innen sauber (keine Klassifikation)
- + Hochdruck geeignet
- + Ausgezeichnet glatte Oberfläche nach der Rollierbördelung

Empfohlene Edelstahlrohre und Leitungen

Parker empfiehlt den Einsatz von nahtlosen kaltgezogenen Edelstahlrohren und Leitungen, entsprechend DIN EN 10216-5 ASTM A269/A213 ASTM A312

- + Präzisionsabmessung/Form
- + Hochdruckgeeignet
- + Ausgezeichnet glatte Oberfläche nach der Rollierbördelung

Geschweißte Rohre und Leitungen

Rohre und Leitungen, entsprechend den oben aufgeführten Spezifikationen, aber geschweißt und kalt nachgezogen anstelle von nahtlos gezogenen, sind in der Regel geeignet.

Die Druckleistung könnte auf Grund der Schweißnahtbereiche verringert sein.

Die Schweißnahtqualität könnte die Qualität der gerollten Bördelungsoberfläche beeinflussen.

Warm gewalzte Rohre

Warm gewalzte Rohre werden aus folgenden Gründen nicht empfohlen:

Warm gewalzte Rohre weisen keine Präzisionsabmessungen auf und können in Bearbeitungsmaschinenwerkzeugen rutschen. Die Rohre weisen innen und außen Zunder auf. Der Zunder im Inneren reduziert den Reinheitsgrad der Flüssigkeit. Beim Bördelungsvorgang verunreinigt der Zunder die Bördelwerkzeuge (hoher Reinigungsaufwand) und verursacht eine schlechte Qualität der Bördelungsoberfläche.

Der zulässige maximale Arbeitsdruck wird entweder entsprechend DNV, DIN oder ANSI kalkuliert.

Werkstoffkennwerte

1.0308 (E235/St.35.4) nach DIN EN 10305-4						
Zugfestigkeit	min 340 N/mm ²					
Streckgrenze	min 235 N/mm ²					
Schwellfestigkeit	225 N/mm ² 1)					
Bruchdehnung	min. 25%					

1.0508 (E355/St.52.4) nach DIN EN 10305-4						
Zugfestigkeit	min 490 N/mm ²					
Streckgrenze	min 355 N/mm ²					
Schwellfestigkeit	265 N/mm ²					
Bruchdehnung	min. 22 %					

1.4571 (316 Ti) cold drawn (CFA) ³⁾ nach DIN EN 10216-5						
Zugfestigkeit	min 500 N/mm ²					
0.2 % Dehngrenze	min 210 N/mm ²					
1 % Dehngrenze	min 245 N/mm ²					
Schwellfestigkeit	220 N/mm ²					
Bruchdehnung	min. 35 %					

1.4404 (316L) cold drawn (CFA) ³⁾ nach DIN EN 10216-5						
Zugfestigkeit	min 500 N/mm ²					
0.2 % Dehngrenze	min 210 N/mm ²					
1 % Dehngrenze	min 245 N/mm ²					
Bruchdehnung	min. 35 %					

1.4401 (316) nach DIN EN 10216-5							
Zugfestigkeit	min 510 N/mm ²						
0.2 % Dehngrenze	min 205 N/mm ²						
1 % Dehngrenze	min 240 N/mm ²						
Bruchdehnung	min. 40 %						

1.4301 (304) nach DIN EN 10216-5							
Zugfestigkeit	min 500 N/mm ²						
0.2 % Dehngrenze	min 195 N/mm ²						
1 % Dehngrenze	min 230 N/mm ²						
Schwellfestigkeit	195 N/mm ^{2 2)}						
Bruchdehnung	min. 40 %						

1.4404 (316L) ASTM A269 / A213						
Zugfestigkeit	min 530 N/mm ²					
Streckgrenze	min 276 N/mm ²					
0.2 % Dehngrenze / 1.6 ⁴⁾	172.5 N/mm ²					

1.4404 (316L) ASTM A312 / A530						
min 515 N/mm ²						
min 234 N/mm ²						
146 N/mm ²						

- 1) DIN 2413 Entwurf, Tab. 4
- 2) Rollof/Matek ME Ausg. 14, (keine Normvorgabe)
- ³⁾ Kaltverfestigungserhöhung in Anlehnung an 1.4571
- ⁴⁾ Nenndruck-Berechnung, basierend auf diesen mechanischen Eigenschaften, erfordern eine Zertifizierung gemäß 3.1 -EN 10204, die die mechanischen Eigenschaften bestätigt.

Rohrkalkulation für Marine und Offshore nach DNV Richtlinien

Kalkulation des Arbeitsdrucks von Stahl und Edelstahlrohren für den Schiffbau nach DNV Teil 4, Kapitel 6, Teil 6.

$$P = \frac{20 \cdot \sigma_t \cdot e \cdot t_0}{D - t_0}$$

P = zulässiger Arbeitsdruck [bar]

 σ_t = zulässige Beanspruchung [N/mm²]] kalkuliert vom niedrigeren Wert des: Edelstahl:

 $t_0 = t_n \cdot a - c - b$

$$\sigma_t = \frac{R_m}{2.7} \text{ or } \frac{K}{1.6}$$
 $\sigma_t = \frac{R_m}{2.7} \text{ or } \frac{K}{1.8}$

to = Rohrwandstärke ohne Aufmaße [mm]

tn = Nominale Rohrwandstärke [mm]

a = Faktor für Rohrwandstärkenaufmaß [mm]

= 0,8 für Rohr-AD 4-5, 0,85 für Rohr-AD 6-8, 0,9 für Rohr-AD >=10

= 0.9 für alle Edelstahlrohre

b = Biegeaufmaß

 $b = 0.1333 \cdot t_0 \text{ (at R/D=3)} \rightarrow t_0 = \frac{t_n \cdot a - c}{1.1333}$

c = Korrosionstoleranz, c = 0,3 mm für Hydraulikstahlrohr, c = 0 mm für Edelstahlrohr

e = Stärkequotient: Für nahtlose Rohre e = 1

D = Rohre-Außendurchmesser [mm]

R_m= min. Zugfestigkeit [N/mm²]

K = min. Dehngrenze oder min 0,2% Beanspruchung [N/mm²]

Rohrkalkulation für Landbasierte- und Industrie-Anwendungen

DIN 2413 I, nur für statische Belastung

Kalkulation des Arbeitsdrucks für Stahlrohre mit statischer Beanspruchung bis 120°C. Korrosion - zusätzliche Beanspruchungen wurden zur Berechnung des Druckes nicht berücksichtigt. Rohre mit einem Durchmesser von AD/ID >2 sind mit einer dynamischen Beanspruchung nach DIN 2413 III kalkuliert, aber mit K = Streckfestigkeit.

$$P = \frac{20 \cdot K \cdot s \cdot c}{S \cdot D}$$

P = zulässiger Arbeitsdruck [bar]

K = Streckfestigkeit [N/mm²]

s = Rohrwandstärke [mm]

c = Faktor für Rohrwandstärkenaufmaß

= 0,8 für Rohr-AD 4-5, 0,85 für Rohr-AD 6-8, 0,9 für Rohr-AD 10

= 0,9 für alle Edelstahlrohre

S = Sicherheitsfaktor = 1,5

D = Rohraußendurchmesser [mm]

DIN 2413 III, für dynamische Belastung

Kalkulation des Arbeitsdrucks von Stahlrohren mit dynamischer Beanspruchung bis 120°C.

Korrosion - zusätzliche Beanspruchungen wurden zur Berechnung des Druckes nicht berücksichtigt.

$$P = \frac{20 \cdot K \cdot s \cdot c}{S \cdot (D + s \cdot c)}$$

P = zulässiger Arbeitsdruck [bar]

K = Streckfestigkeit [N/mm²]

s = Rohrwandstärke [mm]

c = Faktor für Rohrwandstärkenaufmaß

= 0,8 für Rohr-AD 4-5, 0,85 für Rohr-AD 6-8, 0,9 für Rohr-AD 10-80

= 0,9 für alle Edelstahlrohre

S = Sicherheitsfaktor = 1,5

D = Rohraußendurchmesser [mm]]

Berstdruckkalkulation

Kalkulation gemäß Formel nach DIN 24131, ohne Sicherheit

BP = Berstdruck

Rm= min. Zugfestigkeit

s = Rohrwandstärke

= Faktor für Rohrwandstärkenaufmaß

= 0,8 für Rohr-AD 4-5, 0,85 für Rohr-AD 6-8, 0,9 für Rohr-AD 10

0,9 für alle Edelstahlrohre

D = Rohraußendurchmesser [mm]

$$BP = \frac{20 \cdot Rm \cdot s \cdot c}{D}$$

Druckabschläge und Temperaturen

Werkstoffbedingte Druckabschläge gegenüber den Katalogangaben, sind bei erhöhten Temperaturen erforderlich. Verschraubungswerkstoff und Dichtungsmaterial müssen entsprechend der Betriebstemperatur ausgewählt werden.

Der DNV kann je nach Anwendung abweichende Druckabschläge vorschreiben.

Werkstoff	Druckabschläge der zulässigen Betriebstemperaturen in °C														
Werkston	-60	-54	-40	-35	-25	+20	+50	+100	+120	+150	+175	+200	+250	+300	+400
Stahl Komponenten			0 %							-11 %	-19	9%	-28 %		
Stahlrohre		0%				0 %					-19 %		-27 %		
Edelstahl Komponenten			0 %					-11 %		-20	20 % -30) %		
Edelstahlrohre	0 %					-5,5 %	-11,5 %	-21,5 % -			-29	29 % -34%			
Dichtungswerkstoff NBR (z. B. Perbunan)															
Dichtungswerkstoff FKM															
Dichtungswerkstoff Polyurethan (P5008)															

Zulässige Umgebungstemperatur bei hydraulischer und pneumatischer Anwendung
Temperatur nicht zulässig

Berechnungsbeispiel: Temperatur = 200°C

Material = Nichtrostender Stahl

Druckabschlag = 29%

Druckabschlag Rohre = 21,5%

PN Rohr 16x2.5/71. DIN2413 III = 362 bar

Zulässige Betriebstemperatur

Formel:

$$PN_{200^{\circ}\text{C}} = \frac{400 \text{ bar}}{100\%} \times (100\% - 29\%) = 284 \text{ bar}$$

$$PN_{\text{Rohr } 200^{\circ}\text{C}} = \frac{362 \text{ bar}}{100\%} \times (100\% - 21, 5\%) = 284 \text{ bar}$$

Strömungsdurchmesser von Rohrleitungen

Bestimmung der Rohre für Hydraulik-Systeme

Die richtige Rohrauswahl und Verschraubungsart ist entscheidend für einen effizienten und störungsfreien Betrieb eines Hydraulik-Systems. Zur Rohrauswahl gehört die Festlegung des richtigen Werkstoffs und der richtigen Abmessung (Außendurchmesser und Wanddicke).

Die richtige Rohrbestimmung für verschiedene Teile eines Hydrauliksystems führt zu wirtschaftlicher und kostengünstiger Ausführung.

Ein zu kleines Rohr verursacht hohe Strömungsgeschwindigkeiten mit vielen nachteiligen Folgen. In Druckleitungen führt es zu hohen Reibungsverlusten und Turbulenzen, wodurch es zu hohen Druckverlusten und Hitzeentwicklung kommt. Hohe Wärme führt zu höherem Verschleiß in bewegten Teilen und zum schnellen Altern von Dichtungen, also zu verkürzter Lebensdauer. Hohe Wärmeentwicklung bedeutet ebenso Energieverschwendung und folglich geringe Wirtschaftlichkeit. Zu große Rohre führen zu hohen Systemkosten. Folglich ist eine optimale Rohrauswahl sehr wichtig. Nachfolgend ist eine einfache Vorgehensweise zur Rohrbestimmung dargestellt.

Bestimmung des erforderlichen Durchflussquerschnitts

Nach der Tabelle kann der empfohlene Innendurchmesser für die erforderliche Durchflussmenge des Leitungstyps bestimmt werden.

Die Tabelle basiert auf empfohlenen Durchflussgeschwindigkeiten, die im Schiffbau und der Offshorekonstruktion einheitlich sind.

Druckleitung
$$-3 \rightarrow 7.2 \left[\frac{m}{s}\right]$$
Rücklaufleitung $-2 \rightarrow 4.5 \left[\frac{m}{s}\right]$
Saugleitung $-1 \rightarrow 1.8 \left[\frac{m}{s}\right]$

Vermeiden von Durchflussgeschwindigkeiten $> 8\,\mathrm{m/s!}$ Die entstehenden Kräfte sind hoch und können die Rohrleitungen zerstören.

Wenn eine andere Durchlussgeschwindigkeit gewünscht wird, kann der erforderliche Innendurchmesser nach folgender Formel berechnet werden.

Rohr – I.D. [mm] = 4,61 x
$$\sqrt{\frac{\begin{array}{c} \text{Durchfluss-} \\ \text{menge} \end{array} \left[\frac{\text{ltr.}}{\text{min}}\right]}{\begin{array}{c} \text{Durchflussge-} \\ \text{schwindigkeit} \end{array} \left[\frac{m}{s}\right]}$$

Bestimmung der erforderlichen Wanddicke

Zur Bestimmung der empfohlenen Rohrwanddicke für den gewünschten Arbeitsdruck und Rohrinnendurchmesser Tabellen im Rohrkapitel beachten. Dazu den max. Arbeitsdruck auswählen, der gleich oder höher ist als der gewünschte Arbeitsdruck.

Durchflusseigenschaften

Hydraulikanlagen werden meist nur mit einer durch Erfahrungen vorgegebenen Strömungsgeschwindigkeit ausgelegt. Die Druckverluste in den Leitungen werden nicht berücksichtigt oder später in den Probeläufen der Anlage gemessen. Da die Druckverluste überproportional zu den Strömungswiderständen ansteigen, ist es für die optimale Auslegung einer Anlage wichtig, sie schon bei der Planung zu berücksichtigen. Die Berechnung ist nicht so schwierig, wie häufig angenommen wird. Dieser Beitrag soll eine Anleitung dazu geben. Außerdem werden Hinweise dazu gegeben, wie zu hohe Druckverluste vermieden werden können. Denn: Druckverluste bedeuten Leistungsverluste, das Öl erwärmt sich sehr stark, es treten Geräusche auf und evtl. Kavitation in Saugleitungen.

Medium

Alle Angaben zu den Durchflusswiderständen und dem Verhalten der Strömungen beziehen sich ausschließlich auf Flüssigkeiten. Für gasförmige Medien muss zusätzlich noch die variable Dichte des Gases berücksichtigt werden.

Einheiten

 $c = \text{Str\"{o}} \text{mungsgeschwindigkeit} \left[\frac{\text{m}}{\text{s}} \right]$

d = Rohrinnendurchmesser[m]

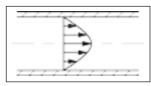
L = Rohrlänge [m]

p = Druck [Pa], 1 bar = 100000 Pa

 $\dot{V} = \text{Volumenstrom} \left[\frac{\text{m}^3}{\text{s}} \right], 1 \frac{\text{m}^3}{\text{s}} = 6000 \frac{\text{I}}{\text{min}}$

 λ = Rohrreibungszahl

v(T) =Kinematische Viskosität des Mediums in Abhängigkeit zur Temperatur $\begin{bmatrix} m^2 \\ s \end{bmatrix}$


 $\rho(T)$ = Dichte des Mediums in Abhängigkeit zur Temperatur $\frac{\text{kg}}{\text{m}^3}$

 $\zeta = Einzelwiderstandsbeiwert$

Es wurden nur Grundeinheiten verwendet. Das hat den Vorteil, dass die Formeln keine Korrekturfaktoren enthalten. Es besteht keine Verwechslungsgefahr, dass Werte in der falschen Einheit eingesetzt werden. Wenn Angaben in anderen Einheiten vorliegen, z. B. wird der Volumenstrom häufig in L/min angegeben, ist es ratsam, sie vor Beginn der Rechnung in die Grundeinheiten umzusetzen.

Druckverluste in Rohrleitungen

Um Druckverluste in Rohrleitungen zu berechnen, muss zuerst abgeschätzt werden, ob laminare oder turbulente Strömung vorhanden ist. Laminare Strömung ist gleichförmig und ohne Verwirbelungen. Bei turbulenter Strömung steigen die Verluste sprunghaft an.

Strömungsprofil bei laminarer Strömung

Strömungsprofil bei turbulenter Strömung

Die Art der Strömung wird durch die Reynoldszahl gekennzeichnet. Bei einer Reynoldszahl größer als 2320 schlägt die Strömung ins Turbulente um. Die Reynoldszahl wird berechnet aus der Formel:

$$Re = \frac{c \cdot d}{v(T)}$$

Die Reynoldszahl ist eine dimensionslose Zahl. Die kritische Strömungsgeschwindigkeit, bei der die Strömung umschlagen kann, wird danach errechnet aus:

$$c_{cr} = 2320 \cdot \frac{v(T)}{d} \left[\frac{m}{s} \right]$$

Bei vorgegebenem Volumenstrom kann die Strömungsgeschwindigkeit errechnet werden aus:

$$c = \frac{\dot{V} \cdot 4}{d^2 \cdot \pi} \left[\frac{m}{s} \right]$$

Anschließend kann die Rohrreibungszahl λ errechnet werden. Die Rohrreibungszahl λ ist eine Funktion der Reynoldszahl und ist außerdem von der Rauhigkeit der Rohre abhängig. Da in der Hydraulik im allgemeinen von hydraulisch glatten Rohren ausgegangen werden kann, wird die Rohrreibungszahl λ nach folgender Formel errechnet:

laminare Strömung, (Re < 2320):
$$\lambda = \frac{64}{Re}$$

turbulente Strömung, (Re > 2320):
$$\lambda = \frac{0.3164}{\sqrt[4]{\text{Re}}}$$

Abschließend, wenn alle Faktoren bekannt sind, kann der Druckverlust in einer bestimmten Rohrleitung berechnet werden nach der Formel:

$$\Delta p = \lambda \cdot \frac{L}{d} \cdot \frac{\rho(T) \cdot c^2}{2} [Pa]$$

Berechnung von Einzelwiderständen

In einer Hydraulikanlage gibt es nicht nur Rohrleitungen, sondern auch Ventile, Rohrverschraubungen, Rohrbögen usw., die Strömungsverluste verursachen. Diese Einzelverluste sind oft sehr viel größer als die Rohrverluste und errechnen sich nach folgender Formel:

$$\Delta p = \zeta \cdot \rho(T) \cdot \frac{c^2}{2} [Pa]$$

Rohre - Marine- und Offshore-Anwendungen (DNV Regeln)

- 1 DNV Gebogenes Rohr inklusive Herstellungs- und Korrosionstoleranzen 2 DNV Gerades Rohr inklusive Herstellungs- und Korrosionstoleranzen
- 3 Berstdruckkalkulation (B.D.) inklusive Herstellungstoleranz

Rohr E 235N /St. 37.4 NBK - Cr(VI)-frei verzinkt oder phosphatiert und geölt

	1	2	3		Phosphatiert	
Rohr	DNV	DNV		Gewicht	und geölt	Cr(VI)-frei
AD x WD	PN bar	PN bar	B.D. bar	kg/mtr.	Bestellzeichen	Bestellzeichen
06x1,0	230	373	1105	0,07	R06x1	R06x1CF
06X1,5	437	506	1658	0,17	R06X1.5	R06X1.5CF
08X1,0	169	193	829	0,17	R08X1	R08X1CF
08X1,5	315	362	1243	0,24	R08X1.5	R08X1.5CF
10X1,0	146	167	702	0,22	R10X1	R10X1CF
10X1,5	267	306	1053	0,31	R10X1.5	R10X1.5CF
12X1,5	218	250	878	0,39	R12X1.5	R12X1.5CF
12X2,0	324	373	1170	0,49	R12X2	R12X2CF
14X2,0	273	313	1003	0,59	R14X2	R14X2CF
15X1,5	172	196	702	0,50	R15X1.5	R15X1.5CF
15X2,0	253	290	936	0,64	R15X2	R15X2CF
16X1,5	160	183	658	0,54	R16X1.5	R16X1.5CF
16X2,0	235	270	878	0,69	R16X2	R16X2CF
16X2,5	315	362	1097	0,83	R16X2.5	R16X2.5CF
18X1,5	142	162	585	0,61	R18X1.5	R18X1.5CF
18X2,0	207	237	780	0,79	R18X2	R18X2CF
20X2,0	185	212	702	0,89	R20X2	R20X2CF
20X2,5	246	282	878	1,08	R20X2.5	R20X2.5CF
20X3,0	309	356	1053	1,26	R20X3	R20X3CF
20X4,0	445	516	1404	1,58		R20X4CF
22X1,5	115	131	479	0,76	R22X1.5	R22X1.5CF
22X2,0	167	191	638	0,99	R22X2	R22X2CF
22X2,5	221	254	798	1,20	R22x2.5	R22X2.5CF
25X2,0	146	167	562	1,13	R25X2	R25X2CF
25X2,5	193	221	702	1,39	R25X2.5	R25X2.5CF
25X3,0	242	277	842	1,63	R25X3	R25X3CF
25X4,0	344	397	1123	2,07	R25X4	R25X4CF
28X2,0	129	148	501	1,28	R28X2	R28X2CF
28X3,0	214	245	752	1,85	R28X3	R28X3CF
30X2,0	120	137	468	1,38		R30X2CF
30X3,0	198	227	702	2,00	R30X3	R30X3CF
30X4,0	281	323	936	2,56	R30X4	R30X4CF
30X5,0	368	425	1170	3,08	R30X5	R30X5CF
35X2,0	103	117	401	1,63	R35X2	R35X2CF
35X3,0	168	192	602	2,37	R35X3	R35X3CF
38X2,5	124	141	462	2,19		R38X2.5CF
38X3,0	154	176	554	2,59	R38X3	R38X3CF
38X4,0	217	248	739	3,35	R38X4	R38X4CF
38X5,0	282	324	924	4,07	R38X5	R38X5CF
42X2,0	85	97	334	1,97	R42X2	R42X2CF
42X3,0	139	158	501	2,89	R42X3	R42X3CF
42X4,0	194	223	669	3,75	R42X4	R42X4CF
50X3,0	115	132	421	3,48	R50X3	R50X3CF
60X3,0	95	109	351	4,22	R60X3	R60X3CF
75X3,0	76	86	281	5,32	R75X3	R75X3CF
90X3,5	75	85	273	7,47	R90X3.5	R90X3.5CF
100X4,0	78	89	281	9,47	R100X4	
115X4,0	68	77	244	10,98	R115X4	
140X4,5	63	72	226	15,04	R140X4.5	
165X5,0	60	68	213	19,73	R165X5	
220X6,0	55	62	191	31,66	R220X6	
273X6,0	44	50	154	39,51	R273X6	

Rohre - Landbasierte- und Industrieanwendungen (DIN Regeln)

- 1 DIN 2413 I statischer Druck (PN) geeignet für Rohre inklusive Herstellungstoleranzen
- 2 DIN 2413 III dynamischer Druck (PN) geeignet für Rohre inklusive Herstellungstoleranzen
- 3 Berstdruckkalkulation (B.D.) inklusive Herstellungstoleranz

Rohr E 235N /St. 37.4 NBK - Cr(VI)-frei verzinkt oder phosphatiert und geölt

					-	ı
	1	2	3		Phosphatiert	
Rohr	DIN 2413 I	DIN 2413 III		Gewicht	und geölt	Cr(VI)-frei
AD x WD	PN bar	PN bar	B.D. bar	kg/mtr.	Bestellzeichen	Bestellzeichen
06x1,0	444	372	1105	0,07	R06x1	R06x1CF
06X1,5	666	526	1658	0,17	R06X1.5	R06X1.5CF
08X1,0	333	288	829	0,17	R08X1	R08X1CF
08X1,5	499	412	1243	0,24	R08X1.5	R08X1.5CF
10X1,0	282	248	702	0,22	R10X1	R10X1CF
10X1,5	423	357	1053	0,31	R10X1.5	R10X1.5CF
12X1,5	353	303	878	0,39	R12X1.5	R12X1.5CF
12X2,0	470	391	1170	0,49	R12X2	R12X2CF
14X2,0	403	342	1003	0,59	R14X2	R14X2CF
15X1,5	282	248	702	0,50	R15X1.5	R15X1.5CF
15X2,0	376	321	936	0,64	R15X2	R15X2CF
16X1,5	264	233	658	0,54	R16X1.5	R16X1.5CF
16X2,0	353	303	878	0,69	R16X2	R16X2CF
16X2,5	441	370	1097	0,83	R16X2.5	R16X2.5CF
18X1,5	235	209	585	0,61	R18X1.5	R18X1.5CF
18X2,0	313	273	780	0,79	R18X2	R18X2CF
20X2,0	282	248	702	0,89	R20X2	R20X2CF
20X2,5	353	303	878	1,08	R20X2.5	R20X2.5CF
20X3,0	423	357	1053	1,26	R20X3	R20X3CF
20X4,0	564	458	1404	1,58	1120/10	R20X4CF
22X1,5	192	173	479	0,76	R22X1.5	R22X1.5CF
22X2,0	256	227	638	0,99	R22X2	R22X2CF
22X2,5	320	278	798	1,20	R22x2.5	R22X2.5CF
25X2,0	226	201	562	1,13	R25X2	R25X2CF
25X2,5	282	248	702	1,39	R25X2.5	R25X2.5CF
25X3,0	338	292	842	1,63	R25X3	R25X3CF
25X4,0	451	378	1123	2,07	R25X4	R25X4CF
28X2,0	201	181	501	1,28	R28X2	R28X2CF
28X3,0	302	264	752	1,85	R28X3	R28X3CF
30X2,0	188	170	468	1,38	TIZONO	R30X2CF
30X3,0	282	248	702	2,00	R30X3	R30X3CF
30X4,0	376	321	936	2,56	R30X4	R30X4CF
30X5,0	470	391	1170	3,08	R30X5	R30X5CF
35X2,0	161	147	401	1,63	R35X2	R35X2CF
35X3,0	242	215	602	2,37	R35X3	R35X3CF
38X2,5	186	168	462	2,19	110070	R38X2.5CF
38X3,0	223	199	554	2,59	R38X3	R38X3CF
38X4,0	297	260	739	3,35	R38X4	R38X4CF
38X5,0	371	318	924	4,07	R38X5	R38X5CF
42X2,0	134	123	334	1,97	R42X2	R42X2CF
42X2,0 42X3,0	201	181	501	2,89	R42X3	R42X3CF
42X4,0	269	237	669	3,75	D 403/4	
50X3,0	169	154	421	3,48	R42X4 R50X3	R42X4CF R50X3CF
60X3,0	141	129	351	4,22	R60X3	R60X3CF
75X3,0	113	104	281	5,32	R75X3	R75X3CF
90X3,5	110	101	273	7,47	R90X3.5	R90X3.5CF
100X4,0	113	104	281	9,47	R100X4	HOUNDIDE
115X4,0	98	91	244	10,98	R115X4	
140X4,5	91	84	226	15,04	R140X4.5	
165X5,0	85		213	19,73	R165X5	
	77	80			R220X6	
220X6,0		72 59	191 154	31,66		
273X6,0	62	58	154	39,51	R273X6	

Rohre - Marine- und Offshoreanwendungen (DNV Regeln)

- 1 DNV Gebogenes Rohr inklusive Herstellungs- und Korrosionstoleranzen 2 DNV Gerades Rohr inklusive Herstellungs- und Korrosionstoleranzen
- 3 Berstdruckkalkulation (B.D.) inklusive Herstellungstoleranz

Rohr E 355N /St.52.4 NBK - Cr(VI)-frei verzinkt oder phosphatiert und geölt

Rohr AD x WD	1 DNV PN bar	2 DNV PN bar	3 B.D. bar	Gewicht kg/mtr.	Phosphatiert und geölt Bestellzeichen	Cr(VI)-frei Bestellzeichen
15X1,5	259	297	959	0,50		R15X1.5ST52CF
15X2,0	381	438	1279	0,61		R15X2ST52CF
16X2,0	355	408	1199	0,69		R16X2ST52CF
16X2,5	475	547	1499	0,83		R16X2.5ST52CF
18X1,5	214	244	800	0,61		R18X1.5ST52CF
18X2,0	313	358	1066	0,79		R18X2ST52CF
20X2,0	279	319	959	0,89		R20X2ST52CF
20X2,5	371	426	1199	1,08		R20X2.5ST52CF
20X3,0	467	537	1439	1,25		R20X3ST52CF
22X1,5	173	197	654	0,76		R22X1.5ST52CF
22X2,0	252	288	872	0,99		R22X2ST52CF
25X2,5	291	333	959	1,39		R25X2.5ST52CF
25X3,0	365	418	1151	1,63		R25X3ST52CF
25X4,0	519	599	1535	2,07		R25X4ST52CF
28X2,0	195	223	685	1,28		R28X2ST52CF
30X3,0	299	343	959	2,00		R30X3ST52CF
30X4,0	424	487	1279	2,56		R30X4ST52CF
30X5,0	555	641	1599	3,08		R30X5ST52CF
35X3,0	254	290	822	2,37		R35X3ST52CF
38X3,0	233	266	757	2,37		R38X3ST52CF
38X4,0	327	375	1010	3,35		R38X4ST52CF
38X5,0	426	490	1262	4,07		R38X5ST52CF
39X7,5	673	781	1845	8,53		R39X7.5ST52CF
42X3,0	209	239	685	2,89		R42X3ST52CF
42X4,0	294	336	914	3,75		R42X4ST52CF
46X8,0	601	695	1669	7,50		R46X8ST52CF
50X5,0	315	361	959	5,55	R50X5ST52	R50X5ST52CF
50X6,0	390	448	1151	6,50	R50X6ST52	R50X6ST52CF
56X8,5	516	595	1456	9,96	R56X8.5ST52	
60X5,0	259	297	800	6,78		R60X5ST52CF
60X6,0	319	366	959	7,97	R60X6ST52	R60X6ST52CF
65X8,0	407	468	1121	11,25		R65X8ST52CF
66X8,5	429	494	1236	12,05	R66X8.5ST52	
73X7,0	309	353	920	11,22	R73X7ST52	R73X7ST52CF
75X5,0	205	234	640	8,63	R75X5ST52	R75X5ST52CF
80X10	418	481	1199	17,21	R80X10ST52	
90X5,0	169	193	533	10,48	R90X5ST52	R90X5ST52CF
90X9,0	326	374	959	17,98	R90X9ST52	R90X9ST52CF
97X12	416	478	1187	25,15	R97X12ST52	
115X15	444	511	1251	36,95	R115X15ST52	
130X15	388	445	1107	42,54	R130X15ST52	
150X15	332	380	959	49,94	R150X15ST52	
190X20	353	405	1010	83,84	R190X20ST52	
250X25	335	384	959	138,72	R250X25ST52	

Rohre - Landbasierte- und Industrie-Anwendungen (DIN Regeln)

- 1 DIN 2413 I statischer Druck (PN) geeignet für Rohre inklusive Herstellungstoleranzen
- 2 DIN 2413 III dynamischer Druck (PN) geeignet für Rohre inklusive Herstellungstoleranzen
- 3 Berstdruckkalkulation (B.D.) inklusive Herstellungstoleranzen

Rohr E 355N /St.52.4 NBK - Cr(VI)-frei verzinkt oder phosphatiert und geölt

					l <u>-</u>	
5 .	1	2	3		Phosphatiert	0.000
Rohr	DIN 2413 I	DIN 2413 III	D D hav	Gewicht	und geölt	Cr(VI)-frei
AD x WD	PN bar	PN bar	B.D. bar	kg/mtr.	Bestellzeichen	Bestellzeichen
15X1,5	426	292	959	0,50		R15X1.5ST52CF
15X2,0	568	379	1279	0,61		R15X2ST52CF
16X2,0	533	357	1199	0,69		R16X2ST52CF
16X2,5	666	436	1499	0,83		R16X2.5ST52CF
18X1,5	355	247	800	0,61		R18X1.5ST52CF
18X2,0	473	321	1066	0,79		R18X2ST52CF
20X2,0	426	292	959	0,89		R20X2ST52CF
20X2,5	533	357	1199	1,08		R20X2.5ST52CF
20X3,0	639	420	1439	1,25		R20X3ST52CF
22X1,5	290	204	654	0,76		R22X1.5ST52CF
22X2,0	387	267	872	0,99		R22X2ST52CF
25X2,5	426	292	959	1,39		R25X2.5ST52CF
25X3,0	511	344	1151	1,63		R25X3ST52CF
25X4,0	682	445	1535	2,07		R25X4ST52CF
28X2,0	304	213	685	1,28		R28X2ST52CF
30X3,0	426	292	959	2,00		R30X3ST52CF
30X4,0	568	379	1279	2,56		R30X4ST52CF
30X5,0	710	461	1599	3,08		R30X5ST52CF
35X3,0	365	253	822	2,37		R35X3ST52CF
38X3,0	336	234	757	2,37		R38X3ST52CF
38X4,0	448	306	1010	3,35		R38X4ST52CF
38X5,0	561	374	1262	4,07		R38X5ST52CF
39X7,5	819	521	1845	8,53		R39X7.5ST52CF
42X3,0	304	213	685	2,89		R42X3ST52CF
42X4,0	406	279	914	3,75		R42X4ST52CF
46X8,0	741	478	1669	7,50	DEOVECTEO	R46X8ST52CF
50X5,0	426	292	959	5,55	R50X5ST52	R50X5ST52CF
50X6,0 56X8,5	511 647	344 425	1151 1456	6,50 9,96	R50X6ST52 R56X8.5ST52	R50X6ST52CF
60X5,0	355	247	800	6.78	R30A0.33132	R60X5ST52CF
	426	292	959	7,97	R60X6ST52	R60X6ST52CF
60X6,0 65X8,0	524	352	1121	11.25	H00X03132	R65X8ST52CF
66X8,5	524	367	1236	12,05	R66X8.5ST52	NUOAGO I DZUF
73X7,0	408	281	920	11,22	 	R73X7ST52CF
75X7,0 75X5,0	284	200	640	8,63	R73X7ST52 R75X5ST52	R75X5ST52CF
80X10	533	357	1199	17.21	R80X10ST52	n/3A3313ZUť
90X5,0	237	168	533	10,48	R90X5ST52	R90X5ST52CF
90x5,0 90x9,0	426	292	959	17,98	R90X9ST52	R90X9ST52CF
97X12	527	354	1187	25,15	R97X12ST52	119079019205
115X15	556	371	1251	36,95	R115X15ST52	
130X15	492	332	1107	42,54	R130X15ST52	
150X15	426	292	959	49,94	R150X15ST52	
190X20	448	306	1010	83,84	R190X20ST52	
250X25	426	292	959	138,72	R250X25ST52	
200720	420	232	909	100,12	TIZUUNZUU TUZ	

Rohre - Marine- und Offshoreanwendungen (DNV Regeln)

- 1 DNV Gebogenes Rohr inklusive Herstellungs- und Korrosionstoleranzen 2 Berstdruckkalkulation (B.D.) inklusive Herstellungstoleranz

Nahtlos kaltgezogenes Edelstahlrohr ASTM A269/A213 - AISI 316L

	•		-	
	1	2		
Rohr	DNV		Gewicht	AISI 316L
AD x WD	PN bar	B.D. bar	kg/mtr.	Bestellzeichen
06X1	493	1590	0,13	R06X1-316
08X1	357	1193	0,18	R08X1-316
10X1	298	954	0,23	R10X1-316
10X1,5	467	1431	0,32	R10X1.5-316
12X1	244	795	0,28	R12X1-316
12X1,5	380	1193	0,39	R12X1.5-316
12X2	526	1590	0,50	R12X2-316
15X1,5	298	954	0,51	R15X1.5-316
16X2	380	1193	0,70	R16X2-316
16X2,5	489	1491	0,85	R16X2.5-316
18X1,5	244	795	0,62	R18X1.5-316
18X2	334	1060	0,80	R18X2-316
20X2	298	954	0,90	R20X2-316
20X2,5	380	1193	1,10	R20X2.5-316
20X3	467	1431	1,28	R20X3-316
22X2	268	867	1,00	R22X2-316
25X2	234	763	1,13	R25X2-316
25X2,5	298	954	1,41	R25X2.5-316
25X3	363	1145	1,65	R25X3-316
28X2	207	681	1,30	R28X2-316
30X2,5	244	795	1,70	R30X2.5-316
30X3	298	954	2,03	R30X3-316
30X4	409	1272	2,60	R30X4-316
35X2	164	545	1,65	R35X2-316
35X3	252	818	2,40	R35X3-316
38X3	231	753	2,63	R38X3-316
38X4	315	1004	3,41	R38X4-316
38X5	403	1255	4,12	R38X5-316
38X6	495	1506	4,81	R38X6-316
42X2	136	454	1,97	R42X2-316
42X3	207	681	2,93	R42X3-316
50X3	173	572	3,53	R50X3-316
50X5	298	954	5,63	R50X5-316
50X6	363	1145	6,61	R50X6-316
60X3	143	477	4,28	R60X3-316
60X5	244	795	6,89	R60X5-316
66X8,5	393	1229	12,24	R66X8.5-316
73X7	284	915	11,57	R73X7-316
75X3	113	382	5,41	R75X3-316
75X5	193	636	8,76	R75X5-316
80X10	380	1193	17,53	R80X10-316
97X12	376	1180	25,54	R97X12X5000-316

Rohre - Landbasierte- und Industrie-Anwendungen (DIN Regeln)

1 DIN 2413 I statischer Druck (PN) geeignet für Rohre inklusive Herstellungstoleranzen 2 Berstdruckkalkulation (B.D.) inklusive Herstellungstoleranzen

Nahtlos kaltgezogenes Edelstahlrohr ASTM A269/A213 - AISI 316L

amioo kang				Aloi oioe
	1	2		
Rohr	DIN 2413 I		Gewicht	AISI 316L
AD x WD	PN bar	B.D. bar	kg/mtr.	Bestellzeichen
06X1	490	1590	0,13	R06X1-316
08X1	368	1193	0,18	R08X1-316
10X1	294	954	0,23	R10X1-316
10X1,5	441	1431	0,32	R10X1.5-316
12X1	245	795	0,28	R12X1-316
12X1,5	368	1193	0,39	R12X1.5-316
12X2	490	1590	0,50	R12X2-316
15X1,5	294	954	0,51	R15X1.5-316
16X2	368	1193	0,70	R16X2-316
16X2,5	459	1491	0,85	R16X2.5-316
18X1,5	245	795	0,62	R18X1.5-316
18X2	327	1060	0,80	R18X2-316
20X2	294	954	0,90	R20X2-316
20X2,5	368	1193	1,10	R20X2.5-316
20X3	441	1431	1,28	R20X3-316
22X2	267	867	1,00	R22X2-316
25X2	235	763	1,13	R25X2-316
25X2,5	294	954	1,41	R25X2.5-316
25X3	353	1145	1,65	R25X3-316
28X2	210	681	1,30	R28X2-316
30X2,5	245	795	1,70	R30X2.5-316
30X3	294	954	2,03	R30X3-316
30X4	392	1272	2,60	R30X4-316
35X2	168	545	1,65	R35X2-316
35X3	252	818	2,40	R35X3-316
38X3	232	753	2,63	R38X3-316
38X4	309	1004	3,41	R38X4-316
38X5	387	1255	4,12	R38X5-316
38X6	464	1506	4,81	R38X6-316
42X2	140	454	1,97	R42X2-316
42X3	210	681	2,93	R42X3-316
50X3	176	572	3,53	R50X3-316
50X5	294	954	5,63	R50X5-316
50X6	353	1145	6,61	R50X6-316
60X3	147	477	4,28	R60X3-316
60X5	245	795	6,89	R60X5-316
66X8,5	379	1229	12,24	R66X8.5-316
73X7	282	915	11,57	R73X7-316
75X3	118	382	5,41	R75X3-316
75X5	196	636	8,76	R75X5-316
80X10	368	1193	17,53	R80X10-316
97X12	364	1180	25,54	R97X12x5000-316

Rohre nach ANSI B36.19 ASTM - A - 312 - TP - 316L

Arbeitsdrucktabelle gemäß DNV Vorgaben zur Klassifizierung von Schiffsneubauten und mobilen Offshore Bohreinheiten.

- 1 ANSI B313 Gebogene Rohrleitung inklusive Herstellungs- und Korrosionstoleranzen
- 2 Berstdruck (B.D.) inklusive Herstellungstoleranzen

Nom. Leitungs- größe SCH Größe	Rohr/Leitung	1 DN h av	2	Gewicht	Doctollosiahan
SCH Große	AD x WD	PN bar	B.D. bar	kg/mtr.	Bestellzeichen
1/2" SCH 10	21,34x2,11	249	917	1,02	auf Anfrage
1/2" SCH 40	21,34x2,77	336	1203	1,29	auf Anfrage
1/2" SCH 80	21,34x3,73	471	1620	1,65	auf Anfrage
1/2" SCH 160	21,34x4,78	632	2076	1,98	auf Anfrage
1/2" SCH xxs	21,34x7,47	1124	3245	2,55	auf Anfrage
3/4" SCH 10	26,67x2,11	196	733	1,30	auf Anfrage
3/4" SCH 40	26,67x2,81	267	977	1,71	auf Anfrage
3/4" SCH 80	26.67x3.91	385	1359	2,33	auf Anfrage
3/4" SCH 160	26,67x5,56	579	1933	2,94	auf Anfrage
3/4" SCH 100	26,67x7,82	886	2718	3,64	auf Anfrage
1" SCH 10	33,40x2,77	206	769	2,13	auf Anfrage
				· '	,
1" SCH 40	33,40x3,38	255	938	2,54	auf Anfrage
1" SCH 80	33,40x4,55	354	1263	3,29	auf Anfrage
1" SCH 160	33,40x6,35	805	1762	4,30	auf Anfrage
1" SCH xxs	33,40x9,09	805	2523	5,45	auf Anfrage
1 1/4" SCH 10	42,16x2,77	161	609	2,73	auf Anfrage
1 1/4" SCH 40	42,16x3,56	210	783	3,44	auf Anfrage
1 1/4" SCH 80	42,16x4,85	294	1066	4,53	auf Anfrage
1 1/4" SCH 160	42,16x6,35	397	1396	5,69	auf Anfrage
1 1/4" SCH xxs	42,16x9,70	653	2133	7,76	auf Anfrage
1 1/2" SCH 10	48,26x2,77	139	532	3,16	auf Anfrage
1 1/2" SCH 40	48,26x3,68	188	707	4,11	auf Anfrage
1 1/2" SCH 80	48,26x5,08	266	976	5,49	auf Anfrage
1 1/2" SCH 160	48,26x7,14	389	1371	7,35	auf Anfrage
1 1/2" SCH xxs	48,26x10,16	586	1952	9,55	auf Anfrage
2" SCH 10	60,30x2,77	111	426	3,99	auf Anfrage
2" SCH 40	60,30x3,91	159	601	5,52	auf Anfrage
2" SCH 80	60,30x5,54	230	852	7,60	auf Anfrage
2" SCH 160	60,30x8,74	380	1344	11,28	auf Anfrage
2" SCH xxs	60,30x11,07	498	1702	13,44	auf Anfrage
2 1/2" SCH 5	73,00x2,11	69	268	3,76	auf Anfrage
2 1/2" SCH 10	73,00x3,05	100	387	5,37	auf Anfrage
2 1/2" SCH 40	73,00x5,16	174	655	8,80	auf Anfrage
2 1/2" SCH 80	73,00x7,01	241	890	11,64	auf Anfrage
2 1/2" SCH 160	73,00x9,53	338	1210	15,15	auf Anfrage
2 1/2" SCH xxs	73,00x14,02	526	1780	20,50	auf Anfrage
3" SCH 5	88,90x2,11	56	220	4,59	auf Anfrage
3" SCH 10	88,90x3,05	82	318	6,45	auf Anfrage
3" SCH 40	88,90x5,49	151	572	11,64	auf Anfrage
3" SCH 80	88,90x7,67	215	800	15,51	auf Anfrage
3" SCH 160	88,90x11,13	322	1161	21,67	auf Anfrage
3" SCH xxs	88,90x15,24	460	1589	27,68	auf Anfrage
4" SCH 5	114,30x2,11	43	171	5,93	auf Anfrage
4" SCH 10	114,30x3,05	63	247	8,50	auf Anfrage
4" SCH 10 4" SCH 40	114,30x6,05 114,30x6,07	129	492	16.32	auf Anfrage
4" SCH 40 4" SCH 80		185	694	22,67	auf Anfrage
4 SCH 80 4" SCH 160	114,30x8,56	302	1094	· '	
	114,30x13,49			34,05	auf Anfrage
4" SCH xxs	114,30x17,12	394	1388	41,03	auf Anfrage
5" SCH 10	141,30x3,40	57	233	41,03	auf Anfrage
5" SCH 40	141,30x6,55	112	430	41,03	auf Anfrage
5" SCH 80	141,30x9,53	165	625	41,03	auf Anfrage
5" SCH 160	141,30x15,88	286	1042	41,03	auf Anfrage
5" SCH xxs	141,30x19,05	350	1250	41,03	auf Anfrage
6" SCH 40	168,30x7,11	101	392	28,69	auf Anfrage
6" SCH 160	168,30x18,26	275	1006	67,56	auf Anfrage
6" SCH xxs	168,30x21,95	337	1209	79,21	auf Anfrage
8" SCH 40	219,10x8,18	89	346	43,20	auf Anfrage
8" SCH 160	219,10x23,01	266	974	111,30	auf Anfrage
8" SCH xxs	219,10x22,00	253	931	106,88	auf Anfrage
10" SCH xxs	273,00x25,40	233	862	101,90	auf Anfrage

Umrechnungstabelle Temperatur

Celsius in Fahrenheit Fahrenheit in Celsius

Ceisius in Fa	nrennen	Fanrenneit in Ceisius			
°C	°F	°F	°C		
150	302	340	171		
145	293	330	166		
140	284	320	160		
135	275	310	154		
130	266	300	149		
125	257	290	143		
120	248	280	138		
115	239	270	132		
110	230	260	127		
105	221	250	121		
100	212	240	116		
95	203	230	110		
90	194	220	104		
85	185	210	99		
80	176	200	93		
75	167	190	88		
70	158	180	82		
65	149	170	77		
60	140	160	71		
55	131	150	66		
50	122	140	60		
45	113	130	54		
40	104	120	49		
35	95	110	43		
30	86	100	38		
25	77	90	32		
20	68	80	27		
15	59	70	21		
10	50	60	16		
5	41	50	10		
0	32	40	4		
-5	23	30	-1		
-10	14	20	-7		
-15	5	10	-12		
-20	-4	0	-18		
-25	-13	-10	-23		
-30	-22	-20	-29		
-35	-31	-30	-34		
-40	-40	-40	-40		
-45	-49	-50	-46		
-50	-58	-60	-51		

Umrechnungstabelle Druck

bar in psi

psi in bar

bar	psi		psi	bar
1000	14505		10000	689
800	11604		9000	620
600	8703		7000	483
500	7253		6000	414
400	5802		4000	276
250	3626		3000	207
160	2321		2500	172
100	1451		1000	69
60	870		900	62
40	580		600	41
35	508		500	34
25	363		400	28
16	232		250	17
10	145		150	10,3
6	87		100	6,9
4	58		90	6,2
2,5	36		60	4,1
1,6	23		40	2,8
1	15		25	1,7
			10	0,7

Beispiele

Temperaturumrechnung

Ausgangswert: 100 °C in °F: 212 °F °F in °C: 37,78 °C

Druckumrechnung

Ausgangswert: 35

bar in psi: 507,675 psi psi in bar: 2,41296 bar

