

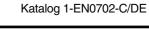
Steffen Haupt
Moritzer Straße 35 01589 Riesa-Poppitz
Tel. 03525/ 68 01 - 0 Fax: 03525/ 6801 - 20
e-mail: info@haupt-hydraulik.de
Internet: www.haupt-hydraulik.com

Flügelzellenpumpen T6**R

Industrie- und Mobilausführung

Dension Flügelzellen- Konstantpumpen

HY02-8001/DE (Auszug – vollständig auf Anfrage)



Vertrieb

Technischer Außendienst

Herr Burkhardt Tel.: 03525 680112 burkhardt@haupt-hydraulik.de

ALLGEMEINES	Merkmale	3
	Allgemeine Anwendungshinweise	3
	Maximale und minimale Drehzahlen	
	Betriebsdruckbereich	
	Pumpenstart	
	Zulässiger Mindesteinlaßdruck	
	Allgemeine Kenngrößen	
	Pumpenauslegung	
	Kurzzeitige Maximaldrücke	0
BAUREIHE T6*R	Konstruktionsprinzip	7
INDUSTRIEAUSFÜHRUNG	Anwendungsvorteile	7
	Wellen und Druckflüssigkeiten	8
T6CR	Bestellschlüssel & technische Daten	10
	Abmessungen und Betriebs-Charkteristik	11
TCDD		
T6DR	Bestellschlüssel & technische Daten	
	Abmessungen und Betriebs-Charkteristik	13
T6ER	Bestellschlüssel & technische Daten	14
	Abmessungen und Betriebs-Charkteristik	15
T6DCCR	Bestellschlüssel & Betriebs-Charakteristik	16
	Technische Daten	17
	Abmessungen	18
	Lage der Anschlüsse	
T6EDCR	Abmessungen	19
	Bestellschlüssel & Betriebs-Charakteristik	
	Technische Daten	
	Lage der Anschlüsse	
BAUREIHE T6*RM	Konstruktionsprinzip	24
MOBILAUSFÜHRUNG	Anwendungsvorteile	
MOBILAGOI OTITIONA	· ·	
	Wellen und Druckflüssigkeiten	25
T6CRM	Bestellschlüssel & technische Daten	26
	Abmessungen und Betriebs-Charkteristik	27
T6DRM	Bestellschlüssel & technische Daten	28
	Abmessungen und Betriebs-Charkteristik	
T6ERM	Bestellschlüssel & technische Daten	30
1021111	Abmessungen und Betriebs-Charkteristik	
KOMBINATION	Bestellschlüssel	20
NO MONTALION	Lage der Anschlüsse VV	
	Lage der Anschlüsse VP, VH & VG	
	•	
	Adapter und Kupplung Auswahl	34

Merkmale

GRÖSSERER FÖRDERSTROM

Durch größere Hubringe im gleichen Pumpengehäuse wird ein größerer Förderstrom erreicht.

 $C \rightarrow 3$ bis 31 GPM, 10 bis 100 cm³/U $D \rightarrow 14 \text{ bis } 50 \text{ GPM}, 48 \text{ bis } 158 \text{ cm}^3/U$ $E \rightarrow 42 \text{ bis } 72 \text{ GPM}, 132 \text{ bis } 227 \text{ cm}^3/\text{U}$

HÖHERER BETRIEBSDRUCK

Nenndrücke bis zu 275 bar, wodurch Abmessungen und Kosten für Stellglieder, Ventile und Druckleitungen reduziert werden.

BESSERER WIRKUNGSGRAD

Höherer Wirkungsgrad unter Last, der die Produktivität erhöht und dadurch Wärmeentwick-lung und Betriebskosten reduziert.

FLEXIBLE MONTAGE

Einfachpumpe: 4 Lagen, und 4 weitere am heckseitig. Dreifachpumpe: 128 Lagen, und 4 weitere am heckseitig.

DURCHTRIEB

Anbauflansch und Kupplungshülse sind SAE J744c und ISO 3019-1 konform. Einfachpumpe SAE A/B/C Ādapter.

SAE A/B/BB/C Kupplungen Dreifachpumpen SAE A Adapter und Kupplung

NIEDRIGER GERÄUSCHPEGEL VOLLSTÄNDIGE KONFORMITÄT Erhöht die Sicherheit und Bequemlichkeit des Maschinenbedieners.

Entspricht den Normen SAE J744c Zweilochflansch, sowie ISO 3019-1. Auch die angebotenen Paßfeder- und Vielkeilwellen entsprechen diesen Normen.

CARTRIDGE-BAUWEISE

Komplette Pumpen- Einsätze ermöglichen Umbau und Service in wenigen Minuten bei geringsten Verschmutzungsrisiko.

GROSSER VISKOSITÄTSBEREICH Viskositäten von 860 bis 10 cSt, (2000 bis 10 cSt für Mobilausführung), erlauben besseren Kalstart und höhere Betriebstemperaturen. Die konstruktive Auslegung kompensiert Verschleiß und erlaubt größere Temperaturbereiche.

SCHWER ENTFLAMMBARE FLÜSSIGKEITEN

Als Druckflüssigkeit mit hohen Drücken und bei langer Lebensdauer der Pumpe können Phosphat- Ester, chlorierte Kohlenwasserstoffe, Wasserglykole und invertierte Emulsionen eingesetzt werden.

ALLGEMEINE ANWENDUNGSHINWEISE

- 1. Drehzahlbereich, Druck, Betriebstemperatur, Druckflüssigkeit, Viskosität und Pumpendrehrichtung überprüfen.
- 2. Saugvermögen der Pumpe auf Übereinstimmung mit den Systemgegebenheiten überprüfen.
- 3. Prüfen, ob Pumpenwelle das erforderliche Drehmoment übertragen kann.
- 4. Wahl der Kupplung nach geringstmöglicher Belastung der Welle: (Masse, Ausrichtung).
- 5. Filtration so aulegen, daß die Grenzwerte der zulässigen Festpartikelverschmutzung eingehalten werden.
- 6. Pumpeninstallation so vornehmen, daß Schwingungen abgekoppelt werden und Stoßbelastungen vermieden werden.

Drehzahlen und Drücke

		Geometrisches	Mindest	Drehzahl max.		Betriebsdruck max.					
Baureihe	Hubring	Fördervolume	Drehzahl	HF-0,HF-1	HF-3, HF-4	HF-0,	HF-2	HF-1, HF	-4, HF-5	HF	-3
Daurenie	nubring	V _{geom.}	min.	HF-2	HF-5	Int.	Cont.	Int.	Cont.	Int.	Cont.
		cm³/U	min ⁻¹	min ⁻¹	min ⁻¹	bar	bar	bar	bar	bar	bar
	*03	10,8									
	*05	17,2									
	*06	21,3									
	*08	26,4		2800			240			175	140
	*10	34,1	600		1800						
CR	*12	37,1	/			275		210	175		
/	*14	46,0	400								
CRM	*17	58,3]								
	*20	63,8]								
	*22	70,3]								
	*25	79,3	[
	*28	88,8]	2500		210	160		160		
	*31	100,0									
	*14	47,6	600 / 400	2500	1800			210		175	
	*17	58,2				240	210		175		
	*20	66,0									140
	*24	79,5									
DR	*28	89,7									
/ DRM	*31	98,3									
	*35	111,0									
	*38	120,3									
	*42	136,0		2200							
	*45	145,7				0.10			100		
	*50	158,0				210	160		160		
	042	132,3									
	045	142,4						210	175		
ER ,	050	158,5	600	0000		0.40	210				440
/	052	164,8	/ 400	2200	1800	240				175	140
ERM	062	196,7	400								
	066 072	213,3	ł								
TCD		227,1			au'alat				ui alak		
T6D0		entspricht T6DR		entspricht				entsp	DR		
P1 P2		T6CR	600	TC:	np						
P:		T6CR	600	16	DR	T6CR T6CR					
T6E											
P		entspricht T6ER				entspricht					
P:			600		_{ED}	T6ER T6DR					
		T6DR	600	16	ER						
P:	3	T6CR						T60	JH		

^{* = 0 :} Industrieausführung

HF-0, HF2 = H-LP- Öle

HF-1 = H-L- Mineralöle

HF-5 = Synthetische Flüssigkeiten

HF-3 = Invertierte Emulsionen

HF-4 = Wasserglykole

Für weitere Information und zur Klärung Ihrer speziellen Anforderungen, sprechen Sie bitte mit Ihrem örtlichen Parker Büro.

PUMPENSTART

Zunächst die Pumpe bei niedrigster Drehzahl und geringstem Druck starten, um einwandfreies Ansaugen sicherzustellen. Ein Druckbegrenzungsventil am Auslaß sollte zurückgestellt sein, um den Staudruck so gering wie möglich zu halten. Vorzugweise sollte ein Entlüftungsventil eingebaut sein, um das System von möglichen Lufteinschlüssen zu befreien. Die Pumpe sollte niemals mit höchster Drehzahl bzw. Druck gefahren werden, bevor nicht sichergestellt wurde, daß sie einwandfrei ansaugt und das Betriebsmedium frei von Lufteinschlüssen ist.

^{* =} B : Mobilausführung

ZULÄSSIGER MINDESTEINLAßDRUCK (BAR ABSOLUT)

Hubringe		Drehzahl min-1								
Größe	Hubring	1200	1500	1800	2100	2200	2300	2500	2800	Hubring
	*03									*03
	*05	1								*05
	*06	1	0,80		0,80	0,80	0,80	0,90		*06
	*08	1							1,00	*08
	*10	1								*10
	*12	1					0,85	0,92		*12
С	*14	0,80		0,80						*14
	*17	1				0,85		0,95	1,03	*17
	*20	1					0,90			*20
	*22	1			0,85	0,90		0,98	1,05	*22
	*25]			0,90	0,95	0,95	1,05		*25
	*28	<u> </u>				0,98	0,98	1,08		*28
	*31				0,85	0,90	1,00	1,11		*31
	*14			0,80	0,80	0,88				*14
	*17]					0,95	1,00		*17
	*20						0,95			*20
	*24				0,82			1,10		*25
	*28				0,85	0,92	1,00	1,18		*28
D	*31	0,80	0,80		0,90	0,95		1,23		*31
	*35				0,92	0,98	1,02	1,29		*35
	*38			0,85	0,95	1,00	1,05			*38
	*42					1,02	1,08			*42
	*45]			0,98	1,05				*45
	*50				1,02	1,09				*50
	042	_			0,88					042
	045									045
	050	0,80	0,80	0,80	0,90	1,00				050
E	052]								052
	062			0,85	0,95					062
	066	0,85	0,85	0,95	1,00	1,09				066
	072			0,85		1,05				072

Hinweis: Vorstehende Tabellenwerte wurden bei Verwendung von Mineralöl mit einer Viskosität von 10 bis 65 mm²/s (cSt) ermittelt.

- Diese Werte sind wie folgt zu multiplieren, bei Verwendung von :
 a) invertierten Emulsionen und Wasserglykolen mit Faktor 1,25.
 b) synthetischen Flüssigkeiten auf Phosphatester-Basis mit Faktor 1,35.
 c) Flüssigkeiten auf Ester-oder Rapsöl-Basis mit Faktor 1,1.

Bei Dreifachpumpen gilt immer der höchste Druck.

ALLGEMEINE KENNGRÖßEN

	Befestigungsnorm	Masse ohne Steckverbinder	Massenträgheits moment	SAE 4 Loch-Flansche J518c - ISO/DIS 6162-1				
	Belestigungsnorm	kg	km ² x 10 ⁻⁴	Sauganschluß Druckanschluß				
T6CR/ T6CRM	SAE J744c ISO/3019-1 SAE B	17,0	7,6	1"1/2		1"		
T6DR/ T6DRM		29,0	23,4	2"		1"1/4		
T6ER/ T6ERM	SAE J744c ISO/3019-1 SAE C	39,2	51,6	3"		1"1/2		
T6DCCR		62,0	37,4	4"	P1	P2	P3	
TODCCH					1"1/4	1"	1" oder 3/4"	
T6EDCR	250 B4HW ISO/3019-2	100,0	80,3	4"	1"1/2	1"1/4	1" oder 3/4"	

HAUPTBERECHNUNG

Gesucht			Gegeben
Fördervolumen	V_{qeom}	[cm ³ /U]	Förderstror

Fördervolumen V_{geom} [cm 3 /U] Förderstrom Q [l/min] 60 Verfügbarer Förderstrom Q_{eff} [l/min] Drehzahl n [min $^{-1}$] 1500 Antriebsleistung P_{eff} [Kw] Druck p [bar] 150

ABLAUF UND BEISPIEL

1. Erste Berechnung
$$V_{geom} = \frac{1000 \ Q}{n}$$
 $V_{geom} = \frac{1000 \ x \ 60}{1500} = 40 \ cm^3/U$

2. Pumpe mit nächsthöherem
$$V_{geom.}$$
 T6CR 014 $V_{geom.}$ = 46 cm³/U auswählen (siehe Tabelle)

3. Theoretischer Förderstrom dieser
$$Q_{theor} = \frac{46 \times 1500}{1000} = 69 \text{ l/min}$$

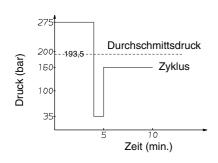
Pumpe
$$Q_{theor} = \frac{V_{geom} x n}{1000}$$

4. Förderstromverlust
$$Q_{verl.}$$
 gemäß dem druck $Q_{Verl.} = f(p)$ (siehe Diagramm) - Viskosität 10 cSt oder 24 cSt auswählen.

T6CR (siehe Seite 4-8- 10) :
$$Q_{Verl.} = 6 \text{ l/min}$$
 bei 150 bar, 24 cSt

5. Verfügbarer Förderstrom
$$Q_{eff.}$$
 $Q_{eff.} = 69 - 6 = 63 \text{ l/min}$

6. Theoretische Antriebsleistung
$$P_{theor} = \frac{Q_{theor.} \times p}{600} = 17.3 \text{ kW}$$


8. Berechnung der erforderlichen
$$P_{\text{eff.}} = 17.3 + 1.5 = 18.8 \text{ kW}$$

Antriebsleistung $P_{\text{eff.}} = P_{\text{theor.}} + P_{\text{Verl.}}$

9. Ergebnisse.
$$V_{geom.} = 46.0 \text{ cm}^3/\text{U}$$

$$Q_{eff.} = 63.0 \text{ l/min}$$

$$P_{eff.} = 18.8 \text{ kW}$$

$$T6CR 014$$

Diese Rechenschritte sind bei jeder Pumpenauslegung erforderlich.

KURZZEITIGE MAXIMALDRÜCKE

T6 Pumpen können kurzzeitig mit den Maximaldrücken betrieben werden, wenn der mittlere Betriebsdrück unter Berücksichtigung der Zykluszeit den maximalen Dauer-Betriebsdrück nicht übersteigt. Ein Betrieb der Pumpen gemäß nachfolgendem Beispiel ist nur dann zulässig, wenn die Grenzwerte für Drehzahl der Pumpe sowie Temperatur, Viskosität und Sauberkeit des Betriebsmediums nicht überschritten werden. Bei Druckzyklen von mehr Is 15 Minuten Dauer dürfen die Pumpen nur mit dem zugelassenen Dauerbetriebsdruck betrieben werden.

Beispiel : T6CR - 014 Arbeitszyklus 4 min. bei 275 bar 1 min. bei 35 bar 5 min. bei 160 bar $\frac{(4 \times 275) + (1 \times 35) + (5 \times 160)}{(4 \times 275) + (1 \times 35) + (5 \times 160)} = 193,5 \text{ bar}$

Der ermittelte Wert von 193,5 bar liegt also unter dem zulässigen Dauerbetriebsdruck von 240 bar für T6CR - 014 bei Verwendung von H- LP- Ölen.

Wellenseitiger Auslaß 4 **Einlaß** Adapter mit Steuerplatte wird axial durch Positionen jeweils 90° versetzt zum Einlaß SAE A SAE B Förderdruck angepreßt, um Leckageverluste zu reduzieren. SAE C Flansch 2-Loch-Stirnflansch nach SAE J744c. Wellen in Paßfeder-oder Vielkeilausführung. Nach SAF-oder Industrie- Norm. Rillenkugellager nimmt Radial-u. Stoßkräfte auf. Kupplung wird in verschiedenen Ausführungen geliefert, um Forderungen des SAE Standards zu Pumpeneinsätze (Cartridges) einzuhalten. sind austauchebare Baugruppen. Sie beinhalten Hubring, Rotor, SAE A SAE B Flügel folgt der Flügel, Kolben uns Steuerplatten. SAE B-B Saugkurvenbahn infolge der Zentrifugal-u. SAE C Öffnungen im Hubring Flügel am großen Trennradius Schnitt 90° ergeben optimalen Füllungsgrad. Kolbenkraft, (Oltransport) Saugkurvenbahn mit ausfahrenden Flügeln. Zelle wird größer. Schnitt B-B Kolbenkammer mit gleichem Druck wie Betriebsdruck. Druckkurvenbahn mit einfahrenden Füllbohrungen speisen Kolbenkammer. В Flügeln. Zelle Füllbohrungen speisen wird kleiner. Kolbenkammer. Schnitt A-A

ANWENDUNGSVORTEILE

• Der hohe Maximaldruck bis 275 bar - bei kleinen Bauabmessungen reduziert die Einbaukosten und führt bei geringgerem Druck zu Längerer Lebensdauer.

Flügel am Kleinen Trennradius.

- Der hohe volumetrische Wirkungsgrad, senkt die Wärmeetwicklung und gestattet minimale Drehzahlen bis 600 min⁻¹ bei vollem Betriebsdruck.
- Der hohe mechanische Wirkungsgrad, normalweise über 94%, reduziert den Energieverbrauch.
- Der große Drehzahlbereich von 600 bis 2800 min⁻¹ optimert in Verbindung mit den großen Fördervolumina der Hubringe den Betrieb bei geringstem Geräuschpegel und kleinsten Bauabmessungen.
- Der Betrieb der Pumpe mit einer hohen Viskosität (bis to 860 cSt) und/oder mit niedrigen Drehzahlen, (bis zu 600 min⁻¹) läßt den Einsatz bei niedrigen Umgebungstemperaturen mit minimalem Energieverbrauch und ohne Ausfallrisiko.
- Die geringe Druckpulsation (± 2 bar) reduziert Leitungsgeräusche und erhöht die Lebensdauer der sonstigen Komponenten des Systems.
- Die große Unempfindlichtkeit gegen Festpartikelverschmutzung aufgrund der doppelten Flügeldichkanten erhöht die Lebensdauer der Pumpe.
- Die Vielfalt der Optionen (Fördervolumina, Wellenausführung, lage der Anschlüsse) gestattet anpassungsfähigen Einbau.

Denison Hydraulikpumpen, konstant Baureihe T6*R Industrieausführung

EMPFOHLENE BETRIEBSMEDIEN

T6-Pumpen können mit den genannten Druckmedien betrieben werden. Optimale Druckmedien sind Mineralole der Gruppe H-LP nach DIN 51525. Die Verwendung anderer Flüssigkeiten ist unter Einschränkung der Betriebsdaten möglich. Bei Verwendung von schwerentflammbaren Flüssigkeiten erhöhen sich die erforderlichen Einlaßdrücke gemäß den aufgeführten Faktoren.

ALTERNATIV VERWENDBARE BETRIEBSMEDIEN

Die Verwendung anderer Flüssigkeiten als H-LP- Öle bringt eine Einschränkung der Eckdaten mit sich. In einigen Fällen muß der Eingangsdruck der Pumpe erhöht werden. Details siehe Seite 4-8-4.

VISKOSITÄT

Max. Startviskosität (Druck und Drehzahl niedrig)	860 mm ² /s(cSt)
Max. Betriebsviskosität (voller Druck, volle Drehzahl)	108 mm ² /s(cSt)
Optimale Betriebsviskosität	30 mm²/s(cSt)
Min. Betriebsviskosität bei nicht- H-LP- Ölen	18 mm²/s(cSt)
(voller Druck, volle Drehzahl)	
Min. Betriebsviskosität bei H-LP- Ölen	10 mm ² /s(cSt)
(voller Druck, volle Drehzahl)	
(voller Druck, volle Drehzahl)	

VISCOSITÄT INDEX

Mindestens 90. Höhere Werte verbreitern den Betriebstemperaturbereich.

TEMPERATUREN

Maximale Flüssigkeitstemperatur HF-0, HF-1, HF-2	+ +	100 °C 50 °C 70 °C 65 °C
Minimale Flüssigkeitstemperatur HF-0, HF-1, HF-2, HF-5		18 °C
HF-3, HF-4		10 °C
Biologisch abbaubare Flüssigkeiten (Ester, Rapsöle)		20 °C

FILTRIERUNGSEMPFEHLUNGEN

Die Druckflüssigkeit ist bei der Befüllung des Systems und während des Betriebs so zu filtern, daß die Festpartikelverschmutzung die Grenzwerte nach NAS 1638 Klasse 8 bzw. ISO 19/17/14 nicht übersteigt. Die Verwendung von Saugfiltern wird nicht empfohlen, wenn das System mit schwerentflammbarer Flüssigkeit betrieben wird oder mit Kalstart zu rechnen ist. Saugfilter müssen überdimensioniert werden und dürfen keine Maschenweite < 150 μ m haben.

BETRIEBSTEMPERATUR UND VISKOSITÄT

Die Viskosität sollte optimal den normalen Betriebstemperaturen angepaßt sein. Für den Kalstart sollten die Pumpen bei geringer Drehzahl und geringem Druck gefahren werden, bis das Medium aufgewärmt eine vertretbare Viskosität für den Vollastbetrieb erreicht hat.

WASSEREINSCHLUß IM MEDIUM

Der maximal zulässige Wassergehalt beträgt

- 0,10% für Mineralöl.
- 0,05% für synthetische Flüssigkeiten, Getriebeöl und biologisch abbaubare Flüssigkeiten. Falls der Wassergehalt höher liegt, sollte die Füllung aus dem System entfernt werden.

VIELKEILWELLEN UND KUPPLUNGEN

- Die zur Welle passende Kupplung muß flexibel und selbstzentrierend sein. Bei starrer Montage von Pumpe und Kupplung darf die lineare Abweichung 0,15 mm nicht überschreiten. Die maximal zulässige Winkelabweichung der beiden Vielkeilprofile beträgt 0,01 mm/10 mm Wellendurchmesser.
- Das Vielkeilprofil muß mit einem Schmierfett auf Molybdänsulfidbasis oder ähnlichem versehen werden.
- Die Kupplung muß eine Härte zwischen 27 und 45 HRC aufweisen.
- Das Profil der Kupplung muß der Klasse 1 nach SAE-J498b entsprechen.

PAßFEDERWELLEN

Parker Pumpen mit Paßfederwellen werden mit hochfesten gehärteten Paßfedern aus Stahl geliefert. Werden diese ausgetauscht, so ist eine Härte zwischen 27 und 34 HRC erforderlich.

ACHTUNG

Die Aussrichtung von Paßfederwellen muss innerhalb der Toleranzen der Vielkeilwellen oben entsprechen.

WELLENBELASTUNG

Diese Produkte wurden in erster Linie für Koaxial-Antriebe entwickelt, die keine axialen oder radialen Kräfte an der Welle aufnehmen müssen. Bitte die Hinweise in den jeweiligen Abschnitten beachten.

